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Biological fliers and swimmers often operate in proximity to a wall or ground plane to
improve their lift-to-drag ratio. However, unsteady aerodynamics models that are restricted to
single objects are unable to account for this so-called ground effect. In this paper, a analytic
reduced-order vortexmodel is developed for a flat plate in ground effect. The complex potential
is calculated in an annular domain, which is mapped to the physical domain via a conformal
mapping that employs the transcendental Schottky-Klein prime function. The effects of vortex
shedding are modelled with the Brown-Michael equation.

I. Introduction
Natural fliers commonly utilise a ground plane to enhance their lift-to-drag ratio [1]. Vehicle designers [2–4] also

seek to exploit this "ground effect" phenomenon, and consequently the accurate mathematical modelling of the flow field
is required. Such a model must be physically accurate and computationally efficient if it is to be used in any optimisation
loop for vehicle design. However, current vortex models [5, 6] are restricted to single-body interactions and cannot take
into account the effect of a ground plane. There are both numerical [7–9] and asymptotic [10–12] investigations, but
this paper proposes a vortex model that is swift to compute and is not restricted to an asymptotic regime where the body
is either very close or far away from the planar wall.

Two-dimensional unsteady flow with low Mach number and high Reynolds number past an airfoil is a classical
problem in fluid-structure interactions that has received considerable attention in the aeronautical literature over the past
century. For theoretical analyses in particular, the representation of how vorticity is shed into the wake to satisfy the
Kutta condition at the trailing edge plays a crucial role in gust-airfoil interactions and related unsteady airfoil problems.
An early model to account for the effect of vortex shedding of a delta wing was formulated by Brown and Michael [13].
Their model supposes that the vorticity shed from an edge rolls up via a connecting vortex sheet into a point vortex with
time-varying circulation. We refer to such vortices as Brown-Michael vortices, whose circulation is set instantaneously
to satisfy the Kutta condition. The Brown and Michael equation describes the motion of the vortex tethered to the
trailing edge before it is released as a free vortex into the flow. However, the original formulation does not guarantee the
vanishing of a reaction force due to an unbalanced couple, which is of minor concern to the fluid dynamic problem
but is important for aeroacoustic predictions based on the model. Howe [14] provided an emended version of the
Brown-Michael equation which does not result in an unbalanced couple.

In the present work, the analyses of [15] and [16] are extended to include the influence of a ground plane. Advances
in conformal mapping theory [17, 18] allow the complex potential to be expressed in terms of the Schottky-Klein prime
function, which may be rapidly computed using a recently developed algorithm [19]. Adapting the approach of Baddoo
and Ayton [20] allows the complex potential to be constructed and applied as a forcing for shed Brown-Michael vortices.
The results of insight into the influence of a ground plane on lift production and aerodynamic performance.
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Fig. 1 A flat plate in ground effect with labelled length-scales. The chord length is c = 1, pitching angle θ, and
ground proximity d. The origin is placed on the ground in-line with the trailing edge, while x is the streamwise
direction and y is the lateral direction. Point vortices of strengths κ j are labelled with spirals, and the dashed
line indicates a branch cut connecting the trailing edge to the Brown-Michael vortex.

II. Mathematical formulation
Our analysis follows the work of [20] and is restricted to inviscid, irrotational, incompressible, two-dimensional

flow. Therefore, there exists a complex potential function

w(z) = φ(z) + iψ(z),

where φ and ψ are the velocity potential and stream function in the physical z-plane, respectively. Similarly to [20], we
consider a plate of length c, inclined at angle θ to the ground, where the distance from the leading edge to the ground is
d, as illustrated in figure 1. Far upstream and downstream, the flow is tangential to the ground and has speed U∞. The
fluid domain may contain a number of free and attached point vortices, which represent incident vorticity on the flat
plate, its vorticity shed into the wake, and the Brown-Michael vortex shed from the trailing edge. No-flux boundary
conditions are imposed on the ground and plate. Additionally, we specify the Kutta condition of finite flow velocity at
the trailing edge. We non-dimensionalise length by c and velocity by U∞.

A. Conformal map
Unlike the simple case of a single aerofoil [16], our domain is doubly-connected and therefore the traditional

methods of conformal mappings to the unit disk or upper half-plane are not applicable. Consequently, we appeal to a
similar conformal map as that used in the study of vortex equilibria in ground effect [20].

Since our domain is doubly-connected, the canonical circular domain is an annulus. We label the exterior circle
of the annulus C0 and the interior circle C1, as illustrated in figure 2. The radius of the interior circle is given by q,
which we vary to change the height from the ground, d. The conformal map we use is called the “radial slit map" [18],
which depends on two parameters, and maps circular regions in the ζ-plane to slits pointing to a particular point in the
z-plane. However, if one of the parameters is taken to lie C0, the radial slit map becomes a radial half-plane map and C0
is mapped to an infinite line. Furthermore, we may choose the second parameter in the radial slit map such that the
(finite) image of C1 is inclined at angle θ to the ground. The corresponding map is given as [20]

z = f (ζ) = A
ω(ζ, e2iθ )

ω(ζ, 1)
+ s, (1)

where A is a constant required to scale the plate to unit length and s is a constant that moves the plate so that the
leading edge is above the origin. Both of these may be determined numerically using a simple Newton method. The
Schottky-Klein prime function is denoted by ω(·, ·).
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Fig. 2 Illustration of the conformal map from the transform ζ -space to the physical z-space. The inner red
circle is mapped to the flat plate and the outer blue circle is mapped to the ground plane. The gray areas
indicate regions that are outside the domain of definition. The point vortices with strengths κj located at αj in
the ζ-plane map to the z-plane, where the vortex strengths are preserved under the conformal mapping.

The Schottky-Klein prime function for the annulus can be expressed in two rapidly convergent forms [19, 21, 22]:

ω(ζ, γ) =
ζ − α

C2

∞∏
k=1

(
1 − q2k ζ

α

)
·

(
1 − q2k α

ζ

)
(2)

= −
α

C2 A
∞∑

n=−∞

(−1)nqn(n−1)
(
ζ

α

)n
, (3)

where

C =
∞∏
k=1

(
1 − q2k

)
, A =

∏∞
n=1

(
1 + q2n)2∑∞

n=1 qn(n−1) .

B. Complex potential
Since we have a conformal map from the annular domain to the physical domain, it is sufficient to calculate the

complex potential in the annular domain. We appeal to the new calculus of vortex dynamics proposed by Crowdy [21],
which provides a framework for the calculation of instantaneous complex potentials associated with multiply-connected
domains. An advantage of this approach which we will exploit is its ability to specify the circulations around individual
bodies.

We follow the procedures of [16] and [20], where the complex potential is split into three contributions: the
contribution from the incident vortex WΓ, the contribution from the shedding vortices Wκ , and the contribution from the
uniform flow WU .

1. Contribution from the incident vortex: WΓ(ζ)
Due to [21], we know that the hydrodynamic Green’s function,

G(0)(ζ, α) =
1

2πi
log

(
ω(ζ, α)

|α |ω(ζ, 1/α)

)
, (4a)

is the complex potential for a unit circulation point vortex at α in any canonical circular domain. An overbar denotes the
complex conjugate. The hydrodynamic Green’s function produces circulation −1 around the object which is the image of
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C0 and zero circulation around the other objects. To specify a non-zero circulation around the obstacle whose boundary
is the image of C1, we use the Möbius map θ1(ζ) = q2ζ and write the modified hydrodynamics Green’s function

G(1)(ζ, α) =
1

2πi
log

(
ω(ζ, α)

|α |ω(ζ, θ1(1/α))

)
. (4b)

The above corresponds to a point vortex of unit circulation at α but now has circulation −1 around the obstacle whose
boundary is the image of C1, i.e. the flat plate. Additionally, the modified hydrodynamics Green’s function produces
zero circulation around all other obstacles.

We are free to choose either Eq. (4a) or Eq. (4b) to represent the complex potential due to the vortices. However,
since we wish the cancel the contributions to the circulation around any body, we are required to choose Eq. (4b). In
order to cancel out the circulation around all bodies we must place a sufficiently strong vortex at the pre-image of infinity.
The pre-image of infinity is ζ∞ = 1 and lies on the body C0. Substituting α = ζ∞ into Eq. (4a) results in a constant, so
we choose Eq. (4b) to represent the complex potential induced by a point vortex in the flow.

Therefore, the complex potential induced by the incident vortex of strength Γ at αΓ, and produces no circulation
around the plate C1 is

WΓ(ζ) = ΓG(1)(ζ, αΓ) − ΓG(1)(ζ, 1)

=
Γ

2πi
log

(
ω(ζ, αΓ)

|αΓ |ω(ζ, q2/αΓ)

)
−
Γ

2πi
log

(
ω(ζ, 1)
ω(ζ, q2)

)
. (5)

2. Contribution from vortex shedding: Wκ(ζ)
Using Eq. (4b), the complex potential induced by N shed vortices of strength κn at αn, which have −κ circulation

around the plate C1, is given by

Wκ(ζ) =

N∑
n=1

κnG(1)(ζ, αn)

=
1

2πi

N∑
n=1

κn log
(

ω(ζ, αn)

|αn |ω(ζ, q2/αn)

)
, (6)

where κ =
∑N

n=1 κn.

3. Contribution from uniform flow: WU (ζ)
The complex potential induced by a uniform flow of magnitude 1 far upstream which produces no circulation around

the plate is given by

WU (ζ) = −a
ωα(ζ, 1)
ω(ζ, 1)

. (7)

where ωα(ζ, 1) is the first derivative of ω(ζ, 1) with respect to α and a is a constant such that

z ∼
a

ζ − 1
,

as ζ → 1. Expanding (1) in its Laurent series yields

a = Aω(1, e2iθ ).
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4. Total complex potential
In summary, the total complex potential for a flat plate in ground effect with N shed vortices of strength κn located

at αn and an incident vortex of strength Γ located at αΓ around the flat plate is given by

W ≡ φ + iψ = WΓ(ζ) +Wκ(ζ) +WU (ζ)

=
Γ

2πi
log

(
ω(ζ, αΓ)

|αΓ |ω(ζ, q2/αΓ)

)
−
Γ

2πi
log

(
ω(ζ, 1)
ω(ζ, q2)

)
+

1
2πi

N∑
n=1

κn log
(

ω(ζ, αn)

|αn |ω(ζ, q2/αn)

)
− a

ωα(ζ, 1)
ω(ζ, 1)

.

The complex velocity field induced by this configuration of vortices may be calculated by differentiating the above,
which yields

dW
dζ

= U(ζ) − iV(ζ)

= ΓG(1)ζ (ζ, αΓ) − ΓG(1)ζ (ζ, 1) +
N−1∑
n=1

(
κnG(1)ζ (ζ, αn) + κNG(1)ζ (ζ, αN )

)
+

dWU

dζ
(ζ). (8)

In terms of the Schottky-Klein prime function (3), the complex velocity is

dW
dζ
(ζ) = U(ζ) − iV(ζ) =

Γ

2πi

(
ωζ (ζ, αΓ)

ω(ζ, αΓ)
−
ωζ (ζ, q2/αΓ)

ω(ζ, q2/αΓ)

)
−
Γ

2πi

(
ωζ (ζ, 1)
ω(ζ, 1)

−
ωζ (ζ, q2)

ω(ζ, q2)

)
+

1
2πi

N−1∑
n=0

κn

(
ωζ (ζ, αn)

ω(ζ, αn)
−
ωζ (ζ, q2/αn)

ω(ζ, q2/αn)

)
+
κN
2πi

(
ωζ (ζ, αN )

ω(ζ, αN )
−
ωζ (ζ, q2/αN )

ω(ζ, q2/αN )

)
− a

(
ωα,ζ (ζ, 1)
ω(ζ, 1)

−
ωα(ζ, 1)ωζ (ζ, 1)

ω2(ζ, 1)

)
,

where κN is the circulation of the shedding vortex, and κn (n = 1, 2, · · · , N − 1) are the circulations of the free vortices
which have been shed from the trailing edge of the plate.

The Kutta condition states that the velocity at the trailing edge of the plate is finite. Accordingly, W must vanish at
ζ = ζt , where ζt is the location of the trailing edge of the plate in ζ−space. Therefore, the instantaneous circulation of
the shedding vortex κN is

κN = −

[
ΓG(1)ζ (ζt, αΓ) − ΓG(1)ζ (ζt, 1) +

N−1∑
n=1

κnG(1)ζ (ζt, αn) + B

] /
G(1)ζ (ζt, αN ), (9)

where B is defined as
B =

dWU

dζ
(ζt ) = −a

(
ωα,ζ (ζt, 1)
ω(ζt, 1)

−
ωα(ζt, 1)ωζ (ζt, 1)

ω2(ζt, 1)

)
. (10)

We note that the derivatives of the hydrodynamic Green’s function are expressible in terms of the Schottky-Klein prime
function (3) as

G(1)ζ (ζ, α) =
1

2πi

(
ωζ (ζ, α)

ω(ζ, α)
−
ωζ (ζ, q2/α)

ω(ζ, q2/α)

)
,

G(1)ζ,α(ζ, α) =
1

2πi

(
ωα,ζ (ζ, α)ω(ζ, α) − ωζ (ζ, α)ωα(ζ, α)

ω2(ζ, α)

)
.
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The derivative of κN with respect to time t is given by

dκN
dt
= −
ΓG(1)ζ,α(ζt, αΓ)

G(1)ζ (ζt, αN )
·

dαΓ
dt
−

1
G(1)ζ (ζt, αN )

N−1∑
n=1

κnG(1)ζ,α(ζt, αn) ·
dαn
dt

+
G(1)ζ,α(ζt, αN )

[
ΓG(1)ζ (ζt, αΓ) − ΓG(1)ζ (ζt, 1) +

∑N−1
n=1 κnG(1)ζ (ζt, αn) + B

]
(
G(1)ζ (ζt, αN )

)2 ·
dαN

dt
.

C. Evolution of vortex shedding
The motion of the most recent vortex shed from the trailing edge is determined by the Brown and Michael

equation [14],

dxN
dt
+

xN
κN

dκN
dt
= vN, (11)

where xN represents the location of a shed vortex tethered to the trailing edge with circulation κN in a vector form with
respect to the rectangular coordinate system x ≡ (x, y), vN is the fluid velocity at the location of zN in a vector form
when its local self-induced velocity contribution is excluded vN ≡ (u, v). The Brown and Michael equation (11) governs
the motion of the trailing-edge vortex until dκN

dt = 0. At this instant the circulation of the Brown-Michael vortex is fixed,
the vortex is released into the wake as a free vortex, and a new Brown-Michael vortex is created at the trailing edge.

Equation (11) can be rewritten in a scalar form:

dαN

dt
+

1
f ′(αN )

f (αN ) − f (αt )
κN

dκN
dt
=

v∗N
f ′(αN )

, (12)

where αN and αt are the mapped vortex location of zN = x + iy and the trailing-edge location in ζ-plane, respectively
and

v∗N =

[
1

f ′(αN )

(
iκN
4π

f ′′(αN )

f ′(αN )
+ F ′(αN )

)]∗
, (13)

The desingularised velocity field is represented by

F ′(αN ) = lim
ζ→αN

[
dW
dζ
(ζ) −

1
2πi

κN
ζ − αN

]
. (14)

Similarly, the motion for the incident vortex is governed by

dαΓ
dt
=

[(
iΓ
4π

f ′′(αΓ)
f ′(αΓ)

+ F ′(αΓ)
)]∗

| f ′(αΓ)|2
, (15)

where

F ′(αΓ) = lim
ζ→αΓ

[
dW
dζ
(ζ) −

1
2πi

Γ

ζ − αΓ

]
. (16)

Finally, the motions for the N − 1 "frozen" trailing edge vortices follow a similar form

dαn
dt
=

[(
iκn
4π

f ′′(αn)

f ′(αn)
+ F ′(αn)

)]∗
| f ′(αn)|2

, (17)

with

F ′(αn) = lim
ζ→αn

[
dW
dζ
(ζ) −

1
2πi

Γ

ζ − αn

]
, for n = 1 , 2 , · · · , N − 1. (18)
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(a) (b)

Fig. 3 Trajectories of the incident vortex αΓ, and three shed vortices α1, α2 and α3 in physical z-plane and
mapped ζ-plane. θ = 0◦.

III. Results
In this section we plot results to investigate the vortex shedding from the trailing edge with the ground effect. The

numerical simulations are carried out and are parameterized uniformly as follows:

x = 2x/c, y = 2y/c, Γ = Γ/(πUc), t = 2Ut/c.

A. Zero inclination angle (θ = 0)
We first consider the case when an incident vortex αΓ starts at the height ∆h = 0.2 above the airfoil with constant

strength Γ = 0.2 and passes by a flat plate airfoil with zero inclination angle (θ = 0) in ground effect. The incident
vortex induces fluid loading on the airfoil thereby causing the shedding of vorticity at the trailing edge. The trajectories
of the vortices in physical z-plane and mapped ζ -plane are shown in Fig. 3, and the streamline at t = 14.97 is shown in
Fig. 4. Our simulations indicate that only three vortices are shed during this vortex-airfoil interaction, and the results are
similar to previous work [16, 23] in the absence of a ground plane. Notably, while the trajectories of α1 and α3 remain
in the vicinity of the x-axis, the trajectory of α2, having an opposite sign of circulation to αΓ, follows the trajectory of
the incident vortex.

Figure 5 compares the corresponding time histories of airfoil circulation against that in the case of a free airfoil (without
ground effect). The ground effect causes higher fluctuation of the airfoil circulation during the time when the incident
vortex passes by the leading edge and the trailing edge of the airfoil. The approximate passing times are marked in red
in Fig. 5. Notably, when the third shed vortex starts to slightly moving downward (see the blue curve in Fig. 3 (a)), the
ground effect quickens approach of the airfoil circulation to its asymptotic long-time value.

B. Small inclination angle (θ = −10◦)
We also consider the case when the airfoil has a pitched angle to the x-axis. The vortex trajectories in both z-plane

and ζ-plane, and the streamlines at different points in time are given in Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10,
respectively.

IV. Conclusion
This paper has considered the shedding of vorticity from a plate interacting with an incident vortex in ground effect.

The model framework is built using the Schottky-Klein prime function and is solved as a potential-flow problem. The
motion of the shedding vortices are determined by the Brown and Michael equation, and the Kutta condition is satisfied
to guarantee the flow leaving the trailing edge smoothly. We compared the simulation results with ground effect against
previous works by [16, 23] in which the ground the effect is not considered. We obtained similar results for the vortex
trajectories, but observed the effect of ground in stabilizing the airfoil circulation.
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Fig. 4 The steady, uniform flow past a flat plate with zero inclination angle (θ = 0◦) in ground effect at t = 14.97,
with the Kutta condition specified. The instantaneous locations of the incident vortex and three vortices are
marked as dots in cyan, red, magenta and blue. The corresponding previous vortex trajectories are marked in
the same color as the dots.

Le
ad
in
g

E
dg
e

Tr
ai
lin
g

E
dg
e

Fig. 5 Comparisons of airfoil circulation histories with and without ground effect. θ = 0◦.
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(a) (b)

Fig. 6 Trajectories of the incident vortex αΓ, and three shed vortices α1, α2 and α3 in physical z-plane and
mapped ζ-plane. θ = −10◦.

Fig. 7 The steady, uniform flow past a flat plate with inclination angle θ = −10◦ in ground effect at t = 6.37,
with the Kutta condition specified, for positive angle of attack. The instantaneous locations of the incident
vortex and three vortices are marked as dots in cyan, red, magenta and blue. The corresponding previous vortex
trajectories are marked in the same color as the dots.
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Fig. 8 The steady, uniform flow past a flat plate with inclination angle θ = −10◦ in ground effect at t = 8.37,
with the Kutta condition specified, for positive angle of attack. The instantaneous locations of the incident
vortex and three vortices are marked as dots in cyan, red, magenta and blue. The corresponding previous vortex
trajectories are marked in the same color as the dots.

Fig. 9 The steady, uniform flow past a flat plate with inclination angle θ = −10◦ in ground effect at t = 13.37,
with the Kutta condition specified, for positive angle of attack. The instantaneous locations of the incident
vortex and three vortices are marked as dots in cyan, red, magenta and blue. The corresponding previous vortex
trajectories are marked in the same color as the dots.
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Fig. 10 The steady, uniform flow past a flat plate with inclination angle θ = −10◦ in ground effect at t = 15.62,
with the Kutta condition specified, for positive angle of attack. The instantaneous locations of the incident
vortex and three vortices are marked as dots in cyan, red, magenta and blue. The corresponding previous vortex
trajectories are marked in the same color as the dots.

Future work will focus on the acoustic emissions of shed vortices in ground effect, which may be analysed using the
compact Green’s function for multiple bodies [24].
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